Hyperion Flex 50A

Mechanical Properties (1)	Green (2)	Post-Cured (3)	Method
Ultimate Tensile Strength (3)	1,7 MPa	3,4 MPa	
Stress at 50 % Elongation	0,5 MPa	0,9 MPa	ASTM D412-06 (A)
Stress at 100 % Elongation	0,9 MPa	1,7 MPa	
Elongation at Break	160 %	160 %	
Shore Hardness	44	55	ASTM 2240
Compression Set (23° C for 22 hours)	-	2,1 %	ACTA A DOOG OO (D)
Compression Set (70° C for 22 hours)	-	3,1 %	ASTM D395-03 (B)
Tear Strength (4)	8,2 kN/m	12,3 kN/m	ASTM D624-00
Bayshore Resilience	-	18 %	ASTM D2632

Thermal Properties (1)	Green	Post-Cured (3)	Method
Glass Transition Temperature (Tg)	-	-34,5° C	DMA

General Properties		
Density	1,01	
Color	Clear	
Viscosity (35° C)	1400 cPs	

Notes:

- 1) Material properties can vary with part geometry, print orientation, print settings, and temperature.
- 2) Data was obtained from parts printed on a SLA printer with 100 μ m, Hyperion Flex 50A settings and Hyperion Flex 50A post-processing steps.
- 3) Tensile testing was performed after 3+ hours at 23 $^{\circ}$ C, using a Die C specimen cut from sheets.
- **4)** Tear testing was performed after 3+ hours at 23 $^{\circ}$ C, using a Die C tear specimen directly printed.